Project number:

POIR.04.04.00-00-15E5/18

Implementation timeframe:

31 October 2019 - 29 December 2023

Project title:

A reconfigurable detector for measuring the spatial distribution of radiation dose for applications in the preparation of individual patient treatment plans.

Intermediary Institution: The National Centre for Research and Development

Implementing Institution: Foundation for Polish Science

Description:

The project is carried out by a scientific consortium consisting of: AGH University of Krakow (consortium leader), Cracow University of Technology and Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch. Project is supported within the TEAM-NET programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund within Operational Programme Smart Growth 2014-2020.

The goal of the project is construction of a detector in the form of a three-dimensional matrix filled with a scintillating material for use in direct measurement of spatial distribution of radiation dose in teleradiotherapy. The head of the detector will be constructed using 3D printing technology. When placed in a radiotherapeutic phantom it will constitute a configurable tool for spatial determination of energy deposited by a therapeutic beam. The detector will be constructed using a plastic scintillating material highly resistant to ionizing radiation with physical parameters resembling live tissues. Operation of the detector will be supervised by a dedicated software. Tests of the entire solution will be conducted in real clinical conditions. Results of the project will impact preparation and quality assurance of personalized treatment plans.

Main page of the project: https://dose3d.fis.agh.edu.pl/

Team of the Cracow University of Technology

Member of the management board: Krzysztof Rzecki, PhD, DSc

Research team:

PhD Students:

Support staff/fellows:

Administration:

Staff previously involved in the team's work:

Published research results:

  1. S. D. Axen, M. Baran, R. Bergmann, and K. Rzecki, “Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds,” ACM Trans. Math. Softw., Sep. 2023, doi: 10.1145/3618296.
  2. M. Baran, Z. Tabor, K. Rzecki, P. Ziaja, T. Szumlak, K. Kalecińska, J. Michczyński, B. Rachwał, M. P. R. Waligórski, and D. Sarrut, “Application of Conditional Generative Adversarial Networks to Efficiently Generate Photon Phase Space in Medical Linear Accelerators of Different Primary Beam Parameters,” Applied Sciences, vol. 13, no. 12, Art. no. 12, Jan. 2023, doi: 10.3390/app13127204.
  3. M. Baran, Z. Tabor, D. Kabat, M. Tulik, K. Jeleń, K. Rzecki, B. Forostianyi, K. Bałabuszek, R. Koziarski, and M. P. R. Waligórski, “Isodoses—a set theory-based patient-specific QA measure to compare planned and delivered isodose distributions in photon radiotherapy,” Strahlenther Onkol, vol. 198, pp. 849–861, Jun. 2022, doi: 10.1007/s00066-022-01964-9.
  4. Ž. Knežević, L. Stolarczyk, I. Ambrožová, M. Á. Caballero-Pacheco, M. Davídková, M. De Saint-Hubert, C. Domingo, K. Jeleń, R. Kopeć, D. Krzempek, M. Majer, S. Miljanić, N. Mojżeszek, M. Romero-Expósito, I. Martínez-Rovira, R. M. Harrison, and P. Olko, “Out-of-Field Doses Produced by a Proton Scanning Beam Inside Pediatric Anthropomorphic Phantoms and Their Comparison With Different Photon Modalities,” Frontiers in Oncology, vol. 12, Jul. 2022, doi: 10.3389/fonc.2022.904563.
  5. M. Baran, Z. Tabor, M. Tulik, D. Kabat, K. Rzecki, T. Sośnicki, and M. Waligórski, “Are gamma passing rate and dose-volume histogram QA metrics correlated?,” Med Phys, vol. 48, no. 9, pp. 4743–4753, Sep. 2021, doi: 10.1002/mp.15142.
  6. Z. Tabor, D. Kabat, and M. P. R. Waligórski, “DeepBeam: a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software,” Radiation Oncology, vol. 16, no. 1, p. 124, Jun. 2021, doi: 10.1186/s13014-021-01847-w.
  7. M. Baran, D. Kabat, M. Tulik, K. Rzecki, T. Sośnicki, and Z. Tabor, “Statistical approach to the selection of the tolerances for distance to agreement improves the quality control of the dose delivery in radiotherapy,” Phys. Med. Biol., vol. 65, no. 14, p. 145004, Jul. 2020, doi: 10.1088/1361-6560/ab86d5.